Trustworthy Incident Information Sharing for Collaborative Cyber Defense

Florian Skopik
AIT Austrian Institute of Technology, AT

October 07, 2013
Vienna
Motivation for Collaborative Cyber Defense

- **Our society** is highly dependent on ICT
- **Cyber crime** has become a profitable business
- **Cyber terrorism** and cyber war are reality!
 - Large-scale distributed denial of service attacks (DoS)
 - Targeted and highly specialized (Stuxnet)
- **Private** organizations run **critical infrastructures**
 - Varying security standards
 - Multitude of new attack vectors
- **Infrastructure** providers get **increasingly interconnected**, resulting in more and more **interdependencies and larger attack surfaces**
- A **critical service outage** (energy, water, transportation, finance) can cause **serious situations for the whole society**.

The security of organizations’ ICT assets becomes a major concern!
Collaborative Cyber Defense – Research Questions

How can we collaboratively …

- support SMEs who deliver critical services to secure their corporate systems?
- set up an effective early warning system on a national level (national cyber security system)?
- detect distributed and coordinated attacks targeting multiple organizations simultaneously?
- protect critical (national) assets through knowledge sharing about incidents?
- investigate and mitigate the impact of attacks on a national level?
Collaborative Cyber Defense – AIT’s Research Agenda

- Linking and coordinating existing initiatives
 - Military initiatives (e.g., ministry of defense etc.)
 - Civil initiatives, e.g., from crisis management
 - ICT: Computer Emergency Response Teams (CERTs)
 - Individual trainings for SMEs
- Facilitating public-private partnerships
 - Private organizations deliver public services
 - Definition of roles, responsibilities, obligations etc.
- Activating inter-organizational collaboration
 - Information exchange regarding exploited vulnerabilities
 - Mutual aid in securing systems against current threats
- Establishing situational awareness on a national level
 - Using advanced anomaly detection approaches
Preliminary Approaches 1: Anomaly Detection Algorithm

- Detect abnormal behavior which might be the effect of an attack
 - Anomaly = a statistically-relevant deviation from the "typical behavior"
 - Typical behavior = the dominant event pattern observed in the past
- Novelties*:
 - Not counting single events on packet layer
 - Instead: extensive temporal analysis of co-occurring high level events
 - Not based on predefined signatures and 3rd party patterns (IDSs)
 - Instead: Adaptive and self-learning approach
- Algorithm design:
 I. Dynamic baseline construction: learn typical behavior of co-occurring events due to system utilization at timespan \(t_{12} \) from past events
 II. Detection: test current events against elements in the baseline

* Patent pending: „Algorithmus zur Anomalie-Detektion“, A50292/2013
Preliminary Approaches 2: Efficient Sharing Structure

- **A hybrid sharing model** unifying p2p-aspects and hierarchical ones.
 - Increase trust between organizations by enabling them to regulate information flows on a p2p-basis.
 - Let organizations decide: what and with whom to share.
 - Enable a national authority to still establish situational awareness.

- **Establish Security Operation Centers (SOCs)**
 - Organizational Level
 - Sectoral Level
 - Cross-Sectoral Level
 - National and European Level

- **A trusted SOC** cares for
 - Incident information storage, distribution, lawful disclosure
 - Maintains contact to national authorities
Preliminary Approaches 3: Sharing Incentive Model

- **Connecting single organizations** to enable them to:
 - Exchange information about **cyber incidents**
 - → collaborative early warning system
 - Report **exploited vulnerabilities**
 - → national impact analysis
 - Apply **mutual aid**
 - → mitigate effects of an attack for the welfare of the country
- … has also several **positive effects on contributing organizations:**
 - **Cut** of security **expenditures**
 - → Collaboration might enable the earlier detection of APTs
 - → Receive hints “what to look for” and “where to take care”
 - **Risk Mitigation**
 - → Being part of an alliance enables one to count on help/support of others.
Preliminary Approaches 4: Applicable Software Framework

- Scalable architecture using both centralized entities and p2p structures
- Formats for attack reports: IODEF, x-Arf
- Proof of Concept using PKI, SOA
- Integration of social networking concepts: trust and reputation
Outlook and (some!) Business Opportunities

- Capture and manage **critical interdependencies** between different CIs
- Deal with Cyber vulnerabilities of CIs and **detection of highly sophisticated attacks** (anomaly detection)
- Improve information handling and **incident management & decision support** (Common Operational Picture contents, visualization, assessment)
- Improve **public-private cooperation** /PPP
- Study the framework applicability from an **organizational and technical perspective**
- Perform systematic capturing and evaluation of usable **best practices**
- Study **societal acceptance**, economic, organizational & **legal viability**
Thank you!

DDr. Florian Skopik
IT Security
Business Unit Information Management & eHealth
Safety & Security Department

florian.skopik@ait.ac.at | +43 664 8251495 | www.ait.ac.at/it-security
Backup Slides
Project Cyber Attack Information System (CAIS)

- **National research project**
 - Partly funded by the Federal Ministry for Transport, Innovation and Technology
- **Project duration:** 2 years, 2011-2013
- **Aim:** to study concepts, models and approaches for **setting up a national cyber center** in order to keep track of ongoing incidents on a national level and establish/maintain **situational awareness**.
- **Partners:** from research, industry, and the government
 - AIT Austrian Institute of Technology
 - Bundeskanzleramt Österreich (The Federal Chancellery)
 - Bundesministerium für Landesverteidig. u. Sport (Ministry of Defence and Sports)
 - Bundesministerium für Inneres (Federal Ministry for the Interior)
 - FH St. Pölten (University of Applied Sciences)
 - OIIP Österreichisches Institut für Internationale Politik
 - T-Mobile Austria
 - T-Systems Austria
 - NIC.AT / CERT.AT
FP7 Sec 2013.2.5-3 ECOSSIAN
European Control System Security Incident Analysis Network

- Large-scale Integrated Project on an European Level
- Development of an organizational and technical framework for a secure, trustworthy information sharing system which protects the anonymity and privacy of all participants
- Development of anomaly detection to enable organizations, governments and transnational bodies to defend their critical infrastructures with respect to a cross border incident response system
- Successor of KIRAS Project CAIS on an European Level
- Project Participants
 - Technikon (AT)
 - Austrian Institute of Technology (AT)
 - Cambrensis (UK)
 - Cassidian (DE/FR)
 - EADS Innovation Works (DE/UK)
 - espion (IE)
 - Finnish Police College (FI)
 - Frauenhofer AISEC (DE)
 - INOV (PT)
 - Portuguese railway network
 - Policia Judiciaria (PT)
 - VTT (FI)